
Week 13. Final exam review
1. True or false?
A. I claim that linked lists have the following advantages over the arrays:

 They allow insertion in the middle in a constant time

 They allow access to the element at position k in a constant time

 They use less memory

 The search is faster because we are following the pointers

B. I claim that for the following variables:
char *a; int *b;

 a and b store values of different types

 sizeof(a) ≠ sizeof(b)

 sizeof(*a) ≠ sizeof(*b)

C. I claim that for the following declarations:
char a [] = "abc"; char *b="abc";

 sizeof(a)=sizeof(b)

 a and b both are variables that store an address

 we can do both a=b and b=a

 the amount of memory used is the same for both declarations

 we can do both a[1] = ‘d’; and b[1]=’d’;

 we can pass both a and b as parameters to a function func (char *c)

2. What is legal?
int x, y;

int *px, *py, *p;

float *pf;

px = &x; /** legal assignment **/

py = &y; /** legal assignment **/

p = px + py; /** addition is illegal **/

p = px * py; /** multiplication is illegal **/

p = px + 10.0; /** addition of float is illegal **/

pf = px; /** assignment of different types is illegal **/

3. Linked lists
Given new data type node:
typedef struct node{

 int data;

 struct node * next;

}node;

 How do we declare a list of nodes? node * head;

 How do we insert a new node new_node after the second element of the list?
int counter = 1;

node *current = head;

while (current!=NULL && counter<2) {

 current=current->next;

counter++;

}

if (counter == 2 && current != NULL) {

 new_node->next = current->next;

 current->next = new_node;

}

 How do we make a circular list of nodes?
We find the last element of the list and set its next to point to the head

 How can we reverse the order of elements in the list in one iteration?
Move each next node on top of a reversed list

 node *headOfReverse = NULL;

 node * current = head;

 node * next = NULL:

 while (current != NULL) {

 next = current->next;

//store pointer to the next node – to continue iteration

 current->next = headOfReverse; //push on top of reverse list

 headOfReverse = current;

 current = next; //advance in the original list

 }

 head = headOfReverse ;

 How can we add new element on top of the list in a void function?
We need to pass an address of a head pointer:

void addOnTop (node ** head, int value)

{

 node * d = (node *)calloc (1, sizeof(node));

 d->data = value;

 if (*head == NULL)

 *head = d;

 else

 {

 d->next = *head->next;

 *head = d;

 }

}

int main (){

 addOnTop (&head, 1);

 return 0;

}

4. Memory segments
Draw memory diagram and say where each variable is stored and to which memory segment it points to

(in case it is a pointer):

5. Pass by value (even pointer variables)
void init_array2 (char ** a, int size) {

*a = (char *) malloc (size);

strncpy(*a, "new value", size-1);

(*a)[size-1] = '\0';

}

int main () {

char * y = "abba";

init_array2 (&y, 8);

fprintf (stdout, "Array after init1 - %s\n", y);

 }

6. File descriptors
A. If you want a parent process to read from a pipe and a child process to write to a pipe, which file

descriptors do you leave open?

Parent: fds[0] or fds[1]

Child: fds[0] or fds[1]

B. You want to implement the following shell pipe in a C program

sort file1 | head

 Which process should be the parent and which one the child? Head is the parent, sort is the child

 How would you use dup2 to set standard output of a child process to the writing end of a pipe, and

standard input of a parent process to the reading end of the pipe?

Parent file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(____fds[0]____, ___0_____)

Child file descriptors: 0, 1, 2, fds[0], fds[1]

dup2(__fds[1]______, ___1_____)

C. Sockets

Server code:

int a= socket(family, type, protocol);

int b= accept(a, &clientAddr, &addrLen);

Client code:

int c= socket(family, type, protocol);

int d=connect(c, &foreignAddr, addrlen);

Which of the file descriptors a,b,c (or d) are used for sending data between server and client?

b and c

7. Handling signals
 How can we make our program to ignore an interrupt signal?

struct sigaction action;
action.sa_handler = SIG_IGN;
sigaction (SIGINT, &action, NULL);

 How can we make sure that our signal handler is not interrupted in the middle by an interrupt
signal?

By adding this signal to the mask argument of sigaction:
struct sigaction action;
action.sa_handler = &my_handler;
sigemptyset(&action.sa_mask);
sigaddset(&action.sa_mask, SIGINT);
sigaction(SIGINT, &action, NULL);

 How can we make sure that the important section of code gets uninterrupted by any signal?
Using sigprocmask with BLOCK and then with UNBLOCK:

sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGINT);

printf("Blocking signals...\n");
sigprocmask (SIG_BLOCK, &sigset, NULL);
 // Critical section
sigprocmask (SIG_UNBLOCK, &sigset, NULL);

